ASYMMETRIC REDUCTIONS USING OPTICALLY ACTIVE ALKOXYLITHIUMALUMINIUMDEUTERIDE* **

O. ČERVINKA, P. MALOŇ and H. PROCHÁZKOVÁ

Department of Organic Chemistry, Institute of Chemical Technology, 166 28 Prague 6

Received October 26th, 1973

The use of chiral reducing agent lithiumaluminiumdeuteride - (--)-quinine for the reductions of aromatic aldehydes and ketones is described. The CD measurements of the resulting partially optically active 1-deuterio alcohols were performed.

We have studied the reductions of ketones by various alkoxylithiumaluminiumhydrides and compared the chiroptical properties of the resulting alcohols¹. Within the scope of the work performed we reduced a series of arenecarbaldehydes Ia-Id, methyl aryl IIa-IId, cyclohexyl aryl IIIa, IIIb and diaryl ketones IVa-IVd using a reducing agent prepared from equimolar amounts of lithiumaluminiumdeuteride and (-)-quinine.*** The results thus obtained are summarized in Table I.

The reductions of arenecarbaldehydes Ia - Id lead to the dextrorotatory 1-deuterio alcohols Va - Vd with optical yields 16 to 40%. We assume the absolute configuration of all the members of this series to be S(+) due to the stereospecific course of the reduction and the known³ S(+) configuration of $[1-{}^{2}H]$ phenylmethanol as well. Having measured the CD curves we have found distinct positive Cotton effect of $S(+)-[1-{}^{2}H]$ phenylmethanol (Va) and of $S(+)-[1-{}^{2}H]p$ -tolylmethanol (Vb) in the region of ${}^{1}L_{b}$ -band of the benzene ring (Table II).

Dextrorotatory alcohols resulted from the reductions of methyl aryl ketones IIa-IId and cyklohexyl aryl ketones IIIa, IIIb. Optical rotations and CD curves were comparable with those of the nondeuterated alcohols obtained in a similar way¹ (Table II). Using this analogy we predict $[1-^2H]$ arylethanols VIa-VId and cyklohexylaryl $[1-^2H]$ methanols VIIa, VIIb to be of R(+) configuration. We have observed the characteristic effect of the methyl group situated in *ortho*-position of the benzene ring (compounds VIb, VId, VIIb), which at the same absolute configuration of the alcohol investigated causes a change of sign of the Cotton effect in 265 nm UV region.

^{*} Part IL in the series Asymmetric Reactions; Part XLVIII This Journal 39, 1582 (1974).

^{**} Červinka O.: Conference on Progress in Organic Chemistry, Liblice, April 24th, 1972.

^{***} Recently Mosher and coworkers² published a paper motivated similarly to ours.

Com- pound	Yield %	B.p., °C/Torr	M.p., °C	[α] ²⁰ _D	Absol. config.	Optical purity, %	
Va	78	65-70/15	_	0.71°a	S(+)	35 ^b , 43 ^c	
Vb	69	_	52 - 54	1.71°d	S(+)	16 ^b	
Vc	52	50 - 60/15	_	0.42°a	S(+)	20 ^b	
Vd	57	88-90/15	-	0.10°a	S(+)	32 ⁶	
VIa	81	7073/11		9·71° ^a	R(+)	20 ^e	
VIb	73	80-82/12	_	27·10°a	R(+)	56 ^e	
VIc	88	97-98/12	_	28·46°ª	R(+)	46 ^e	
VId	87	_ · ·	63-65	20·41°5	R(+)		
VIIa	88		4244	15.00° <i>f</i>	R(+)		
VIIb	85	105-107/0.02	_	4.55°∫	R(+)		
VIIIa	75	- '	4446	$0.00^{\circ d}$	S		
VIIIb	88	_	60 - 63	3.50°d	S(+)		
VIIIc	81		65-72	- 22·19°d	S(-)		
VIIId	75	100-101/0.1	_	26·72° f	S()		

We assume diaryl[1-²H]methanols VIIIa - VIIId to be of S configuration using the analogy to the non-deuterated ones⁴. Phenyl-p-tolyl[1-²H]methanol (VIIIa) though inactive at the sodium D-line exhibits significant Cotton effect on the CD curve (Table II).

TABLE I

Asymmetric Reductions Using Lithiumaluminiumdeuteride and (--)-Quinine

, Neat, l = 1. ^b Based on the NMR spectrum of the MTPA derivative. The signals of the trifluoromethyl group were investigated. ^c Based on optical rotation. ^d Chloroform, c = 2. ^c Based on the NMR spectrum of the MTPA derivative. The signals of the benzylic hydrogen were investigated. ^f Methanol, c = 2.

TABLE II

CD	Data	öf	Partially	Optically	Active	1-Deuterio	Alcohols
----	------	----	-----------	-----------	--------	------------	----------

259	+11	VIIa	261	-220
265	+25	VIIb	265	+38
260	100	VIIIa	265	+250
265	+42	VIIIb	260	+120
263	46	VIIIc	295	+900
280	+102	VIIId	280	+370
			232	+4000
	259 265 260 265 263 280	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	259 + 11 VIIa 265 + 25 VIIb 260 - 100 VIIIa 265 + 42 VIIIb 263 - 46 VIIIc 280 + 102 VIIId	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		R^1 = 0 R^2	LiAlD₄-(−)-qu	inine	HO-	R^1 -D R^2	exc	ess
		I-III					ţ	V— VII
		C_6H_5 $\downarrow = 0$ R^2 IV	LiAlD4-(-)-qu	inine →	0 D- F	C ₆ H ₅ —OH 3 ²	exc	ess
		.,						V 111
	R^1	R ²				R^1		R ²
I, Va	н	phenyl		III,	VIIa	cycloh	exyl	phenyl
I, Vb	н	p-tolyl		III,	VIIb	cycloh	exyl	o-tolyl
I, Vc	н	α-furyl		IV,	VIIIa	phenyl		p-tolyl
I, Vd	н	α-thienyl		IV,	VIIIb	phenyl		p-methoxyphenyl
II, VIa	CH_3	phenyl		IV,	VIIIc	pheny		α-naphthyl
II, VIb	CH_3	o-tolyl		IV,	VIIId	pheny		2,4,6-trimethylphenyl
II, VIc	CH ₃	p-tolyl						
II, VId	CH ₃	2.4.6-trim	ethylphenyl					

EXPERIMENTAL

CD curves were measured on Roussel Jouan Dichrographe in the methanolic solution at concentrations approximately 1 mg/1 ml. NMR determinations of optical purities were carried out using Varian XL-100-15 spectrometer through ¹H and ¹⁹F spectral region. Asymmetric reductions were carried out as standard procedure described previously¹. Melting points reported in Table I are uncorrected.

Optical purity of the partially optically active alcohols was determined from the NMR spectra of diastereoisomeric esters with MTPA using the method of Mosher and coworkers⁵.

The authors are indepted to Dr I. Frič, Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, Prague, for enabling them to perform CD measurements and to Dr P. Trška, Institute of Chemical Technology, Prague, for measuring and help in the interpretation of the NMR spectra.

REFERENCES

- 1. Červinka O., Bělovský O.: This Journal 32, 3897 (1967).
- 2. Reich C. J., Sullivan G. R., Mosher H. S.: Tetrahedron Letters 1973, 1505.
- Althouse V. E., Feigl D. M., Sanderson W. A., Mosher H. S.: J. Am. Chem. Soc. 88, 3595 (1966).
- 4. Červinka O., Suchan V., Masař B.: This Journal 30, 1693 (1965).
- 5. Dale J. A., Dull D. L., Mosher H. S.: J. Org. Chem. 34, 2543 (1969).

Translated by the author (P.M.).